Sachem: A chemical cartridge for high-performance substructure search

<u>Jakub Galgonek</u>, Miroslav Kratochvíl and Jiří Vondrášek Institute of Organic Chemistry and Biochemistry of the CAS

Sachem

- means "the chief of an Indian tribe"
- is implemented as a PostgreSQL extension
- allows substructure search in large datasets
- is open-source
- outperforms other open-source cartridges
- also allows similarity search experimentally

Fingerprint-based substructure search methods

• Step 1: screening

- quickly screen out compounds that can be identified as unable to match the query
- fingerprints are designed to capture important structural features of compounds – each fingerprint bit represents some structure feature
- a feature present in a compound structure must also be present in all its structural extensions
- Step 2: substructure matching
 - instance of a relatively hard subgraph isomorphism problem
 - NP-complete

Fingerprint-based substructure search methods

- currently used fingerprints
 - represented as binary vectors
 - typically contain hundreds or thousands bits
 - special part:
 - manually selected features
 - common part:
 - hashes of three-atom SMILES substructures
 - hashed cyclic subgraphs (up to 8 atoms) and hashed sub-trees (up to 7 atoms)
 - hashed linear paths (up to 7 atoms)

Fingerprint-based substructure search methods

- currently used indexing methods:
 - GiST index
 - B-tree index
 - bitmap index

Sachem

- Sachem/OrChem
 - performance-oriented reimplementation of OrChem
 - OrChem fingerprint
 - static bitmap index
- Sachem/Lucy
 - introduces our own fingerprint
 - full-text index

Sachem/Lucy Fingerprint

- Defines bits of several categories:
 - each distinct atom is considered as a distinct fingerprint bit
 - all smallest rings of all compounds in the ChEBI is considered a substructural pattern for a fingerprint bit
 - all connected subgraphs of with a maximum of one ring and a limited number of bonds are considered a fingerprint bit
 - multiplicity of features was encoded by creating a new fingerprint bit for each power of 2 of the repetitions
- In PubChem:
 - 18.7 million distinct fingerprint bits
 - 860 non-zero bits per compound on average

Sachem/Lucy Index

- identification of each fingerprint bit is encoded to a 6-byte word
- each compound stored in a database is expressed as a document containing words of its non-zero fingerprint bits
- documents are indexed by full-text index
- employs Apache Lucy engine library providing full-text search

Ouery Fingerprint Bit-reduction Algorithm

- Step 1: discard redundant bits
 - if a occurrence of a bit implies a occurrence of other bits, than these bits are redundant in the query and can be discarded
 - has no effect on screening precision
- Step 2: discard less relevant bits
 - discard bits that are less relevant based on their statistical relevance for search
 - takes into the account that all query atoms have to be covered by several selected bits

Benchmark Datasets

- Query Set:
 - 3329 queries from Substructure Query Collection (SQC)
- Datasets:
 - 94M: all compounds in the PubChem database
 - 10M: 10 million random compounds from PubChem
 - 1M: 1 million random compounds from 10M

Screening Efficiency: Precision

Precisions of benchmarked cartridges

precision

Screening Efficiency: False Positive Rate

False positive rates of benchmarked cartridges

false positive rate

Overall performance comparison: 1M Dataset

Dataset 1M

time (ms)

Overall performance comparison: 10M Dataset

Dataset 10M

time (ms)

Overall performance comparison: 94M Dataset

time (ms)

Sachem Web Interface

- beta version
- available at https://idsm.elixir-czech.cz/sachem/
- employs EPAM Ketcher to draw structures
- allows to use Sachem to search compounds in
 - Drugbank: ~ 9,000 compounds
 - ChEBI: ~ 98,000 compounds
 - ChEMBL: ~ 1.7 million compounds
 - PubChem:
- ~ 95 million compounds

Sachem Web Interface

Search options

Н

S

Ρ

F

T

SUBSTRUCTURE SEARCH SIMILARITY SEARCH					
Database: (ChEBI		\$		
Graph mode		substructure		×	
Charge		default any	charge	A. T	
Isotopes		default any	isotope	Å. ▼	
Stereochemistry		ignore	;	*	
Tautomerism		ignore	;	*	
Q SEARC	н	≪ SHARE			

\bigcirc

SPARQL Endpoint

- technical preview demo
- examples available at https://idsm.elixir-czech.cz/sparql/
- web application is based on YASGUI
- allows to integrate search with other SPARQL services
 - neXtProt
 - UniProt
 - ChEMBL

SPARQL Interface: Example Query

```
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX chembl: <http://rdf.ebi.ac.uk/terms/chembl#>
PREFIX uniprot: <http://purl.uniprot.org/core/>
PREFIX sachem:<http://bioinfo.uochb.cas.cz/sparql-endpoint/sachem/>
```

```
SELECT ?COMPOUND ?UNIPROT ?ORGANISM_NAME WHERE
{
   SERVICE <https://www.ebi.ac.uk/rdf/services/sparql>
   {
     SERVICE sachem:chembl {
        ?COMPOUND sachem:substructureSearch [ sachem:query "CC(=0)Oc1ccccc1C(0)=0" ]
     }
     ?ACTIVITY rdf:type chembl:Activity; chembl:hasMolecule ?COMPOUND; chembl:hasAssay ?ASSAY.
     ?ASSAY chembl:hasTarget ?TARGET.
     ?TARGET chembl:hasTargetComponent ?COMPONENT.
```

```
?COMPONENT chembl:targetCmptXref ?UNIPROT.
```

```
?UNIPROT rdf:type chembl:UniprotRef.
```

}

}

```
?UNIPROT uniprot:organism ?ORGANISM.
?ORGANISM uniprot:scientificName ?ORGANISM_NAME.
```


SPARQL Interface: Example Query

CZECH REPUBLIC

SPARQL Interface: Example Query

Table	Response	Pivot Tab	e Google Chart Geo	
T 11	_		Available Variables	
lable				
Cells			Columns	
Count		▼ ↑ ↔		
Rows			ORGANISM_NAME	Totals
ORGANISM	NAME д		Homo sapiens	769
_	· · · · · ·		Rattus norvegicus	82
			Ovis aries	79
			Bos taurus	24
			Mus musculus	12
			Escherichia coli	8
			Oryctolagus cuniculus	8
			Cavia porcellus	8
			Escherichia coli (strain K12)	5
			Staphylococcus aureus	4
			Enterobacter cloacae	4
			Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv)	3
			Bacillus licheniformis	2
			Geobacillus stearothermophilus	2
			Photinus pyralis	2
			Human immunodeficiency virus 1	2
			Equus caballus	2
			Plasmodium falciparum (isolate 3D7)	2

Thank you for your attention!

