African Medicinal Plants: Natural Product Database Development, Lead Discovery and Toxicity Assessment

Dr. Fidele Ntie-Kang^{1,2}

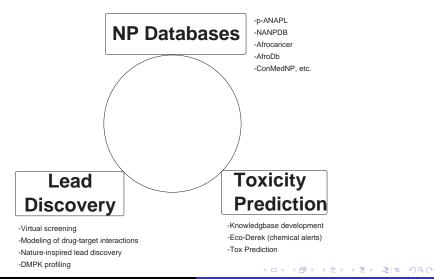
¹Department of Informatics and Chemistry, University of Chemistry and Technology, Prague, Czech Republic

²Department of Chemistry, University of Buea, Buea, Cameroon

12 June 2018

ヘロト (同) (ヨト (ヨト)目目 うので

Concept



Outline

- 2 Lead Compound Discovery
 - Lead Compounds Discovery by Virtual Screening and Biological Testing
- 3 Toxicity Prediction
 - Develoment of Toxicity Prediction Knowledgbase

Lead Compound Discovery Toxicity Prediction Summary

African flora and other sources

Outline

2 Lead Compound Discovery

• Lead Compounds Discovery by Virtual Screening and Biological Testing

3 Toxicity Prediction

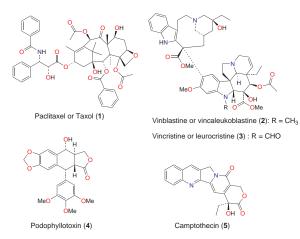
• Develoment of Toxicity Prediction Knowledgbase

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ · · · ○ ○ ○

Lead Compound Discovery Toxicity Prediction Summary

African flora and other sources

Natural Products Preamble



2D structures of selected naturally occurring NP anticancer drug leads.

A D b 4 A

African flora and other sources

Natural Products Some statistics

Table: Natural products versus synthetic drugs

Newman and Cragg. J. Nat. Prod. 2016, 79:629-661

Property	NPs	SDs
Samples	Limited quantities (time consuming	Readily available
	extraction processes)	
Drug-likeness	Weaker bioavailability (poor DMPK)	More bioavailable
Chemistry	Complex scaffolds, more stereogenic	Less O atoms,
	centres	less aromatics, etc.
Marketed drugs	- 6% (unaltered),	
	-26% (NP derivatives),	
	-32% (NP mimics) or from NP ph4s	
	-73% of small molecule antibacterials	
	-50% of anticancer drugs (e.g. taxol) $_{<}$	▼ ▲ 별 ▶ ▲ 별 ▶ ▲ 별 ⊨ ♥ 9

Lead Compound Discovery Toxicity Prediction Summary

African flora and other sources

Natural Products

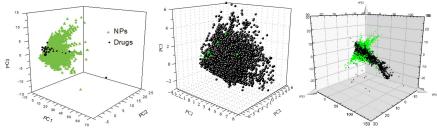
- ~10% of known NP chemical space is purchasable
- Much more on demand (outsourcing services, collaborations, etc.)
- Chen *et al.*, Data resources for the computer-guided discovery of bioactive natural products. *J. Chem. Inf. Model.* **2017**, 57(9):2099-2111

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ���

Lead Compound Discovery Toxicity Prediction Summary

African flora and other sources

Natural Products Chemical space of natural products



(left) NPs (green) in the UNPD and FDA-approved drugs (black): Lachance et al., J. Med. Chem., **2012**, 55:5989-6001. (middle) NPs in MPs (black) and 25 FDA-approved drugs against T2DM (green): Rosén et al., J. Med. Chem., **2009**, 52:1953-1962.

(right) Predicted score (tPS) plots of NPs (green) and bioactive med chem cpds from the WOMBAT database (black):

Feher & Schmidt. J. Chem. Inf. Comput. Sci., 2003, 43:218-227.

315

African flora and other sources

Assessment Criteria Drug-likeness versus natural product-likeness assessment

'Drug-likeness': Lipinski *et al.* (2001)

• Likely OA if: $MW \le 500 \text{ Da}$; $\log P \le 5$; $HBA \le 10$; $HBD \le 5$

'Lead-likeness': Teague et al. (1999)

• Likely LC if: $150 \le MW \le 350$ Da; log $P \le 4$; $HBA \le 6$; $HBD \le 3$

'NP-likeness': Ertl *et al.* (2008)

• Likely an NP if:

 $f_i = \log\left(\frac{A_i}{B_i} \cdot \frac{B_{tot}}{A_{tot}}\right)$

African flora and other sources

Assessment Criteria Drug-likeness versus natural product-likeness assessment

'Drug-likeness': Lipinski *et al.* (2001)

• Likely OA if: $MW \le 500 \text{ Da}$; $\log P \le 5$; $HBA \le 10$; $HBD \le 5$

'Lead-likeness': Teague *et al.* (1999)

 Likely LC if: 150 ≤ MW ≤ 350 Da; log P ≤ 4; HBA ≤ 6; HBD ≤ 3

'NP-likeness': Ertl *et al*. (2008)

• Likely an NP if:

 $f_i = \log\left(\frac{A_i}{B_i} \cdot \frac{B_{tot}}{A_{tot}}\right) \longrightarrow 4P$

Ntie-Kang, F Databases, Lead Discovery, Toxicity Prediction

▲目▶ ▲目▶ 目目 のQ@

African flora and other sources

Assessment Criteria Drug-likeness versus natural product-likeness assessment

'Drug-likeness': Lipinski *et al.* (2001)

• Likely OA if: $MW \le 500$ Da; log $P \le 5$; $HBA \le 10$; $HBD \le 5$

'Lead-likeness': Teague *et al.* (1999)

 Likely LC if: 150 ≤ MW ≤ 350 Da; log P ≤ 4; HBA ≤ 6; HBD ≤ 3

'NP-likeness': Ertl et al. (2008)

• Likely an NP if:

 $F_i = \log\left(\frac{A_i}{B_i} \cdot \frac{B_{tot}}{A_{tot}}\right)$

African flora and other sources

Assessment Criteria Drug-likeness versus natural product-likeness assessment

'Drug-likeness': Lipinski *et al.* (2001)

• Likely OA if: $MW \le 500$ Da; log $P \le 5$; $HBA \le 10$; $HBD \le 5$

'Lead-likeness': Teague et al. (1999)

 Likely LC if: 150 ≤ MW ≤ 350 Da; log P ≤ 4; HBA ≤ 6; HBD ≤ 3

'NP-likeness': Ertl *et al.* (2008)

• Likely an NP if:

 $\hat{f}_i = \log\left(\frac{A_i}{B_i} \cdot \frac{B_{tot}}{A_{tot}}\right)$

African flora and other sources

Assessment Criteria Drug-likeness versus natural product-likeness assessment

'Drug-likeness': Lipinski *et al.* (2001)

• Likely OA if: $MW \le 500$ Da; log $P \le 5$; $HBA \le 10$; $HBD \le 5$

'Lead-likeness': Teague et al. (1999)

• Likely LC if: $150 \le MW \le 350$ Da; log $P \le 4$; $HBA \le 6$; $HBD \le 3$

'NP-likeness': Ertl et al. (2008)

• Likely an NP if:

African flora and other sources

Assessment Criteria Drug-likeness versus natural product-likeness assessment

'Drug-likeness': Lipinski *et al.* (2001)

• Likely OA if: $MW \le 500$ Da; log $P \le 5$; $HBA \le 10$; $HBD \le 5$

'Lead-likeness': Teague et al. (1999)

• Likely LC if: $150 \le MW \le 350$ Da; log $P \le 4$; $HBA \le 6$; $HBD \le 3$

'NP-likeness': Ertl et al. (2008)

• Likely an NP if:

Ntie-Kang, F

Databases, Lead Discovery, Toxicity Prediction

Natural Products from African Medicinal Plants II General objectives

- Generate electronically accessible 3D models for molcular modeling research.
- Valorise the use of medicinal plants in Africa in traditional medicine.
- Identify lead compounds from medicinal plants by using computer modeling (e.g. *via in silico* docking and ph4 modeling).
- Assess the toxicity profiles of metabolites from African sources.

▲帰▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへの

African flora and other sources

Natural Products from African Medicinal Plants II General objectives

- Generate electronically accessible 3D models for molcular modeling research.
- Valorise the use of medicinal plants in Africa in traditional medicine.
- Identify lead compounds from medicinal plants by using computer modeling (e.g. *via in silico* docking and ph4 modeling).
- Assess the toxicity profiles of metabolites from African sources.

▲帰▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへの

Natural Products from African Medicinal Plants II General objectives

- Generate electronically accessible 3D models for molcular modeling research.
- Valorise the use of medicinal plants in Africa in traditional medicine.
- Identify lead compounds from medicinal plants by using computer modeling (e.g. *via in silico* docking and ph4 modeling).
- Assess the toxicity profiles of metabolites from African sources.

▲帰▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへの

African flora and other sources

Natural Products from African Medicinal Plants II General objectives

- Generate electronically accessible 3D models for molcular modeling research.
- Valorise the use of medicinal plants in Africa in traditional medicine.
- Identify lead compounds from medicinal plants by using computer modeling (e.g. *via in silico* docking and ph4 modeling).
- Assess the toxicity profiles of metabolites from African sources.

▲冊▶ ▲目▶ ▲目▶ 目目 のQ@

Natural Products from African Medicinal Plants II General objectives

- Generate electronically accessible 3D models for molcular modeling research.
- Valorise the use of medicinal plants in Africa in traditional medicine.
- Identify lead compounds from medicinal plants by using computer modeling (e.g. *via in silico* docking and ph4 modeling).
- Assess the toxicity profiles of metabolites from African sources.

(日本)

Lead Compound Discovery Toxicity Prediction Summary

African flora and other sources

Natural Products from African Medicinal Plants IV Our contributions I.

Fidele Ntie-Kang.^{10,1,4,0} Kiran K. Telukunta,^{4,4} Kersten Döring,⁴ Conrad V. Simoben,[†] Aurélien F. A. Moumbock,[†] Yvette I. Malange,[‡] Leonel E. Njume,¹¹ Joseph N. Yong,[‡] Wolfgang Sippl,[†] and Stefan Günther^{10,1}

ELE DOG

http://african-compounds.org/about/

African flora and other sources

Natural Products from African Medicinal Plants VI Our contributions III.

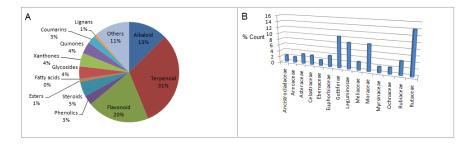
Summary of electronic databases developed within this work.

Library name	Library size	Source organisms	Families
CamMedNP	1,859	224	55
ConMedNP	3,177	376	79
AfroDb	986	-	-
AfroCancer	390	-	-
AfroMalariaDb	511	131	45
Afrotryp	321	-	22
p-ANAPL	534	ND	ND
NANPDB	4,928	751	155

Lead Compound Discovery Toxicity Prediction Summary

African flora and other sources

Natural Products from African Medicinal Plants IV Modeling AfroCancer compounds.



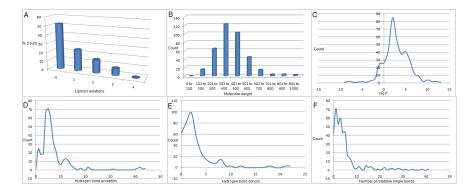
Ntie-Kang et al. J. Chem. Inf. Model., 2014, 54(9):2433-2450

Ntie-Kang, F Databases, Lead Discovery, Toxicity Prediction

Lead Compound Discovery Toxicity Prediction Summary

African flora and other sources

Natural Products from African Medicinal Plants IV Modeling AfroCancer compounds.



Ntie-Kang et al. J. Chem. Inf. Model., 2014, 54(9):2433-2450

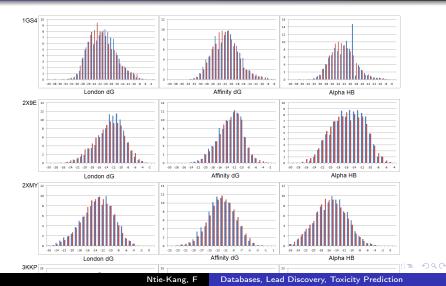
< 口 > < 同

고 노

Lead Compound Discovery Toxicity Prediction Summary

African flora and other sources

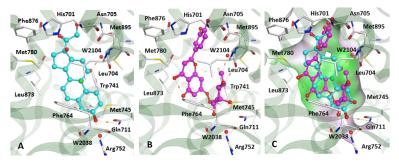
Natural Products from African Medicinal Plants IV Modeling AfroCancer compounds.



Lead Compound Discovery Toxicity Prediction Summary

African flora and other sources

Natural Products from African Medicinal Plants IV Modeling AfroCancer compounds.



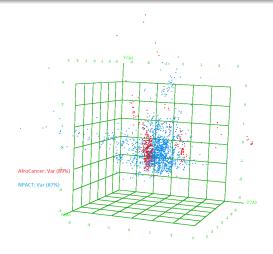
Top scoring pose for Glide docking of AfroCancer for modeling of the androgen receptor: (A) crystal structure the drug target (1GS4) in complex with cocrystallized 9α -fluorocortisol. (B) in complex with docked luteolin-7-O- β -glucopyranoside (from the Egyptian medicinal plant, *Livistona australis*). (C) Comparison of binding modes

of docking pose of the luteolin-7-O- β -glucopyranoside with co-crystallized 9α -fluorocortisol. Polar regions are shown in magenta, hydrophobic regions in green.

Lead Compound Discovery Toxicity Prediction Summary

African flora and other sources

Natural Products from African Medicinal Plants IV Modeling AfroCancer compounds.

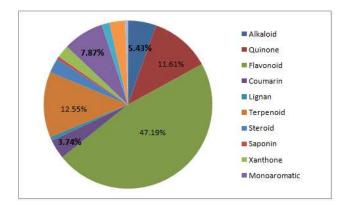


Ntie-Kang et al. Drug Design Dev Therapy., 2016, 10:2137-2154 B A C A C

Lead Compound Discovery Toxicity Prediction Summary

African flora and other sources

Natural Products from African Medicinal Plants V The p-ANAPL project.



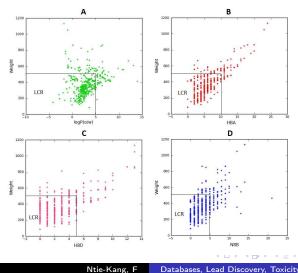
Ntie-Kang et al. PLoS ONE, 2014, 9(3): e90655.

◆□ ▶ ◆□ ▶ ★ □ ▶ ★ □ ▶ ● □ ■ ● ● ● ●

Lead Compound Discovery Toxicity Prediction Summary

African flora and other sources

Natural Products from African Medicinal Plants V The p-ANAPL project.

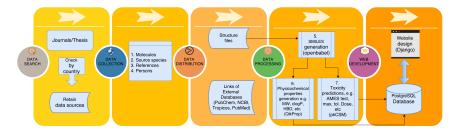


Databases, Lead Discovery, Toxicity Prediction

Lead Compound Discovery Toxicity Prediction Summary

African flora and other sources

Natural Products from African Medicinal Plants V The NANPDB project.



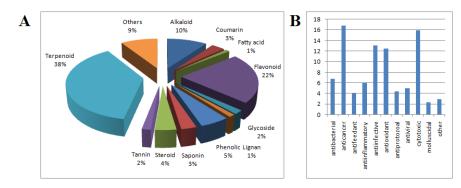
Ntie-Kang et al. J. Nat. Prod., 2017, 80(7):2067-2076.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()~

Lead Compound Discovery Toxicity Prediction Summary

African flora and other sources

Natural Products from African Medicinal Plants V The NANPDB project.



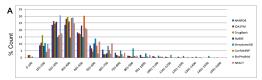
Ntie-Kang et al. J. Nat. Prod., 2017, 80(7):2067-2076.

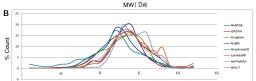
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ���

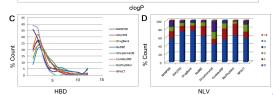
Lead Compound Discovery Toxicity Prediction Summary

African flora and other sources

Natural Products from African Medicinal Plants V The NANPDB project.







Ntie-Kang, F

Databases, Lead Discovery, Toxicity Prediction

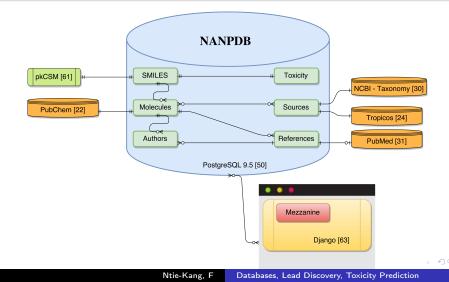
ELE DQA

э

Lead Compound Discovery Toxicity Prediction Summary

African flora and other sources

Natural Products from African Medicinal Plants V The NANPDB project.



LBVS/SBVS

Outline

2 Lead Compound Discovery

• Lead Compounds Discovery by Virtual Screening and Biological Testing

3 Toxicity Prediction

• Develoment of Toxicity Prediction Knowledgbase

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ · · · ○ ○ ○

LBVS/SBVS

Pharmacophore-based Virtual Screening Background and motivation

- Currently, no licensed ARVs target the accessory proteins of HIV-1.
- Vpu is an 81–82 amino acid transmembrane protein that is found in HIV-1.
- Vpu enhances viral replication through multiple functions, e.g. by downregulating CD4 and the host restriction factor BST2/CD317/tetherin. Vpu is also reported by some to have ion channel activity
- HIV-1 viruses with defective Vpu generally display reduced spread, defects in viral budding, and accumulation at the surface of infected cells.
- Thus, effective replication of HIV *in vivo* requires a functional Vpu protein, which makes it a promising drug target.

LBVS/SBVS

Pharmacophore-based Virtual Screening Background and motivation

- Currently, no licensed ARVs target the accessory proteins of HIV-1.
- Vpu is an 81–82 amino acid transmembrane protein that is found in HIV-1.
- Vpu enhances viral replication through multiple functions, e.g. by downregulating CD4 and the host restriction factor BST2/CD317/tetherin. Vpu is also reported by some to have ion channel activity
- HIV-1 viruses with defective Vpu generally display reduced spread, defects in viral budding, and accumulation at the surface of infected cells.
- Thus, effective replication of HIV *in vivo* requires a functional Vpu protein, which makes it a promising drug target.

LBVS/SBVS

Pharmacophore-based Virtual Screening Background and motivation

- Currently, no licensed ARVs target the accessory proteins of HIV-1.
- Vpu is an 81–82 amino acid transmembrane protein that is found in HIV-1.
- Vpu enhances viral replication through multiple functions, e.g. by downregulating CD4 and the host restriction factor BST2/CD317/tetherin. Vpu is also reported by some to have ion channel activity
- HIV-1 viruses with defective Vpu generally display reduced spread, defects in viral budding, and accumulation at the surface of infected cells.
- Thus, effective replication of HIV *in vivo* requires a functional Vpu protein, which makes it a promising drug target.

LBVS/SBVS

Pharmacophore-based Virtual Screening Background and motivation

- Currently, no licensed ARVs target the accessory proteins of HIV-1.
- Vpu is an 81–82 amino acid transmembrane protein that is found in HIV-1.
- Vpu enhances viral replication through multiple functions, e.g. by downregulating CD4 and the host restriction factor BST2/CD317/tetherin. Vpu is also reported by some to have ion channel activity
- HIV-1 viruses with defective Vpu generally display reduced spread, defects in viral budding, and accumulation at the surface of infected cells.
- Thus, effective replication of HIV *in vivo* requires a functional Vpu protein, which makes it a promising drug target.

LBVS/SBVS

Pharmacophore-based Virtual Screening Background and motivation

- Currently, no licensed ARVs target the accessory proteins of HIV-1.
- Vpu is an 81–82 amino acid transmembrane protein that is found in HIV-1.
- Vpu enhances viral replication through multiple functions, e.g. by downregulating CD4 and the host restriction factor BST2/CD317/tetherin. Vpu is also reported by some to have ion channel activity
- HIV-1 viruses with defective Vpu generally display reduced spread, defects in viral budding, and accumulation at the surface of infected cells.

• Thus, effective replication of HIV *in vivo* requires a functional Vpu protein, which makes it a promising drug target.

Pharmacophore-based Virtual Screening Background and motivation

- Currently, no licensed ARVs target the accessory proteins of HIV-1.
- Vpu is an 81–82 amino acid transmembrane protein that is found in HIV-1.
- Vpu enhances viral replication through multiple functions, e.g. by downregulating CD4 and the host restriction factor BST2/CD317/tetherin. Vpu is also reported by some to have ion channel activity
- HIV-1 viruses with defective Vpu generally display reduced spread, defects in viral budding, and accumulation at the surface of infected cells.
- Thus, effective replication of HIV *in vivo* requires a functional Vpu protein, which makes it a promising drug target.

LBVS/SBVS

Pharmacophore-based Virtual Screening Literature

Anal Bioanal Chem (2010) 396:2559–2563 DOI 10.1007/s00216-010-3498-x

SHORT COMMUNICATION

Ligand-protein docking studies of potential HIV-1 drug compounds using the algorithm FlexX

George Patargias • Gary Ewart • Carolyn Luscombe • Wolfgang B. Fischer

Biochimica et Biophysica Acta 1512 (2001) 291-298

www.bba-direct.com

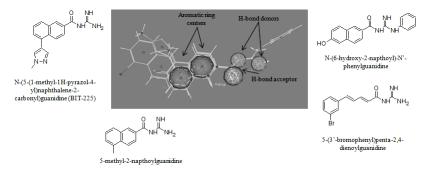
▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

The structure of the HIV-1 Vpu ion channel: modelling and simulation studies

F.S. Cordes ^a, A. Kukol ^{1,b}, L.R. Forrest ^a, I.T. Arkin ^{2,b}, M.S.P. Sansom ^a, W.B. Fischer ^{a,*}

LBVS/SBVS

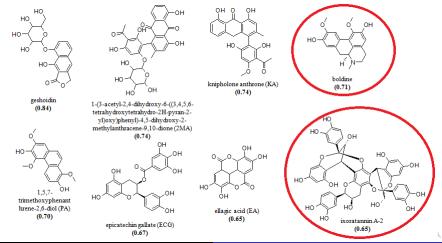
Pharmacophore-based Virtual Screening Our contribution



Tietjen I, Ntie-Kang F, et al., PLos ONE, 2015, 10(4): e0121099.

LBVS/SBVS

Pharmacophore-based Virtual Screening Virtual hits



Ntie-Kang, F

Databases, Lead Discovery, Toxicity Prediction

LBVS/SBVS

Pharmacophore-based Virtual Screening Virtual hits

Table 1. Cell toxicity and inhibition of HIV-1_{NL4-3} in CEM-GXR cells by p-ANAPL compounds.

Compound	Cell toxicity (CC50, µM)	HIV-1 _{NL4-3} inhibition (EC50, μ M)	
BIT-225	10.7	n/d	
geshoidin	>10	>100	
2MA	50.9	>100	
KA	0.9	n/d	
boldine	>100	50.2	
PA	26.8	n/d	
ECG	>100	>100	
EA	52.3	>100	
ixoratannin A-2	57.5	34.4	

n/d, not determined.

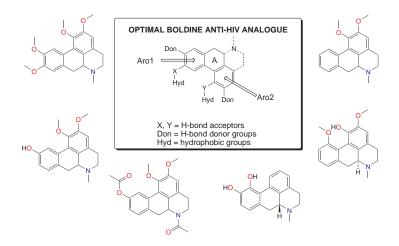
doi:10.1371/journal.pone.0121099.t001

Tietjen I, Ntie-Kang F, et al., PLos ONE, 2015, 10(4): e0121099.

LBVS/SBVS

Pharmacophore-based Virtual Screening

Ideas for Boldine analogues



< ∃ >

LBVS/SBVS

Structure-based Virtual Screening Background on sirtuins

- Sirt = silent information regulator, belonging to a highly conserved family of drug targets.
- In the category of epigenetic drug targets, they are referred to as "erasers".
- Sirts are nicotinamide adenine dinucleotide (NAD⁺)-dependent class III histone deacetylases.
- Sirts are linked to the pathogenesis of numerous diseases, e.g. HIV, metabolic disorders, neurodegeneration (including Alzheimer's disease and Parkinson's disease), aging and cancer.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

LBVS/SBVS

Structure-based Virtual Screening Background on sirtuins

- Sirt = silent information regulator, belonging to a highly conserved family of drug targets.
- In the category of epigenetic drug targets, they are referred to as "erasers".
- Sirts are nicotinamide adenine dinucleotide (NAD⁺)-dependent class III histone deacetylases.
- Sirts are linked to the pathogenesis of numerous diseases, e.g. HIV, metabolic disorders, neurodegeneration (including Alzheimer's disease and Parkinson's disease), aging and cancer.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

LBVS/SBVS

Structure-based Virtual Screening Background on sirtuins

- Sirt = silent information regulator, belonging to a highly conserved family of drug targets.
- In the category of epigenetic drug targets, they are referred to as "erasers".
- Sirts are nicotinamide adenine dinucleotide (NAD⁺)-dependent class III histone deacetylases.
- Sirts are linked to the pathogenesis of numerous diseases, e.g. HIV, metabolic disorders, neurodegeneration (including Alzheimer's disease and Parkinson's disease), aging and cancer.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

LBVS/SBVS

Structure-based Virtual Screening Background on sirtuins

- Sirt = silent information regulator, belonging to a highly conserved family of drug targets.
- In the category of epigenetic drug targets, they are referred to as "erasers".
- Sirts are nicotinamide adenine dinucleotide (NAD⁺)-dependent class III histone deacetylases.
- Sirts are linked to the pathogenesis of numerous diseases, e.g. HIV, metabolic disorders, neurodegeneration (including Alzheimer's disease and Parkinson's disease), aging and cancer.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

LBVS/SBVS

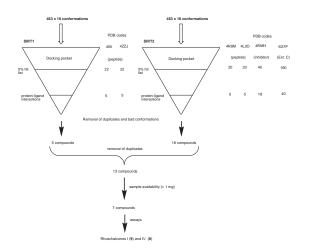
Structure-based Virtual Screening Background on sirtuins

- Sirt = silent information regulator, belonging to a highly conserved family of drug targets.
- In the category of epigenetic drug targets, they are referred to as "erasers".
- Sirts are nicotinamide adenine dinucleotide (NAD⁺)-dependent class III histone deacetylases.
- Sirts are linked to the pathogenesis of numerous diseases, e.g. HIV, metabolic disorders, neurodegeneration (including Alzheimer's disease and Parkinson's disease), aging and cancer.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▼ ◆○

LBVS/SBVS

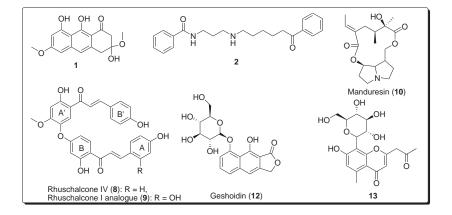
Structure-based Virtual Screening Discovery of sirtuin inhibitors



◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()~

LBVS/SBVS

Structure-based Virtual Screening Discovery of sirtuin inhibitors



Ntie-Kang, F Databases, Lead Discovery, Toxicity Prediction

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● Q @

LBVS/SBVS

Structure-based Virtual Screening Discovery of sirtuin inhibitors

Table 1. IC_{50} or percentage inhibitions at 50% of tested pan-African Natural Products Library (p-ANAPL) compounds against sirt1, 2 and 3.

Compound Number	Sirt 1 (µM)	Sirt 2 (µM)	Sirt 3 (µM or % Inhibition)
1 ^b	n.d. ^c	n.d. ^c	n.d. ^c
2	n.i. ^a	n.i. ^a	n.i. ^a
8	46.7 ± 6.0	48.5 ± 39.5	38%
9	40.8 ± 8.5	44.8 ± 5.1	23%
10	n.i. ^a	n.i. ^a	n.i. ^a
12 ^b	n.d.	n.d.	n.d.
13	n.i. ^a	n.i. ^a	n.i. ^a
NA	142.4 ± 9.1	49.8 ± 4.6	67.9 ± 3.3
EX-527	1.4 ± 0.1	10.6 ± 1.1	19%

^a n.i. = no inhibition (<10%). ^b autofluorescence. ^c n.d. = not detectable. Note that activity was not detectable due to the autofluorescence. NA = nicotinamide, EX-527 = sirt inhibitor in clinical trials.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ����

LBVS/SBVS

Structure-based Virtual Screening Discovery of sirtuin inhibitors

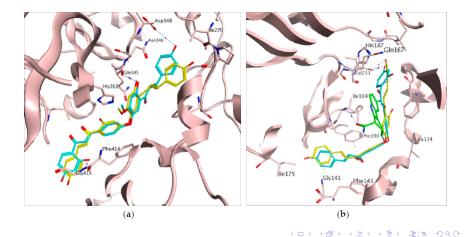
-*Rhus pyroides* (Anacardiaceae) -Tree from Eastern Botswana -Antifeedant properties

-Rich source of O-linked and C-C -Coupled bischalcones and biflavonoids

< 口 > < 同

LBVS/SBVS

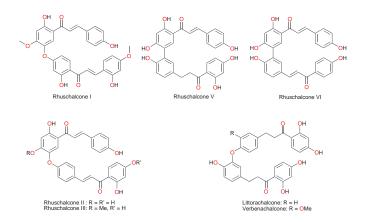
Structure-based Virtual Screening Discovery of sirtuin inhibitors



Ntie-Kang, F Databases, Lead Discovery, Toxicity Prediction

LBVS/SBVS

Structure-based Virtual Screening Some suggestions



Eco-Derek, Alerts

Outline

- 2 Lead Compound Discovery
 - Lead Compounds Discovery by Virtual Screening and Biological Testing
- 3 Toxicity Prediction
 - Develoment of Toxicity Prediction Knowledgbase

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ · · · ○ ○ ○

Eco-Derek, Alerts

Knowledgbase for Toxicity Prediction Eco-Derek Background

- Toxicity model: 40 hour static flow growth inhibition assay (log(1/IGC₅₀) values) for the ciliated protozoan *Tetrahymena pyriformis*, from Schultz *et al.* Toxicol. Methods 1997, 7: 289-309.
- Published data on over 1200 chemicals, from Xue *et al.* Chem. Res. Toxicol. 2006, 19:1030-1039.
- log(1/IGC₅₀) was predicted as a function of log P, e.g. log (1/IGC₅₀50 NPN) = 0.78 log P - 2.01 (n = 87, r² = 0.96).

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Eco-Derek, Alerts

Knowledgbase for Toxicity Prediction Eco-Derek Background

- Toxicity model: 40 hour static flow growth inhibition assay (log(1/IGC₅₀) values) for the ciliated protozoan *Tetrahymena pyriformis*, from Schultz *et al.* Toxicol. Methods 1997, 7: 289-309.
- Published data on over 1200 chemicals, from Xue *et al.* Chem. Res. Toxicol. 2006, 19:1030-1039.
- log(1/IGC₅₀) was predicted as a function of log P, e.g. log (1/IGC₅₀50 NPN) = 0.78 log P - 2.01 (n = 87, r² = 0.96).

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Eco-Derek, Alerts

Knowledgbase for Toxicity Prediction Eco-Derek Background

- Toxicity model: 40 hour static flow growth inhibition assay (log(1/IGC₅₀) values) for the ciliated protozoan *Tetrahymena pyriformis*, from Schultz *et al*. Toxicol. Methods 1997, 7: 289-309.
- Published data on over 1200 chemicals, from Xue *et al.* Chem. Res. Toxicol. 2006, 19:1030-1039.
- $log(1/IGC_{50})$ was predicted as a function of log P, e.g. log $(1/IGC_{50}50 \text{ NPN}) = 0.78 \log P 2.01 (n = 87, r^2 = 0.96).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Eco-Derek, Alerts

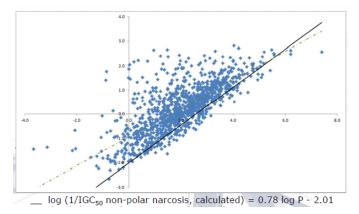
Knowledgbase for Toxicity Prediction Eco-Derek Background

- Toxicity model: 40 hour static flow growth inhibition assay (log(1/IGC₅₀) values) for the ciliated protozoan *Tetrahymena pyriformis*, from Schultz *et al.* Toxicol. Methods 1997, 7: 289-309.
- Published data on over 1200 chemicals, from Xue *et al.* Chem. Res. Toxicol. 2006, 19:1030-1039.
- $log(1/IGC_{50})$ was predicted as a function of log P, e.g. log $(1/IGC_{50}50 \text{ NPN}) = 0.78 \log P 2.01 (n = 87, r^2 = 0.96).$

ヘロト (同) (ヨト (ヨト)目目 うので

Eco-Derek, Alerts

Knowledgbase for Toxicity Prediction Eco-Derek Background



- Computer modeling was used to valorise of the medicinal potential of African medicinal plants (databases, lead compounds, etc.).
- New databases were developed and published in the web.
- Identification NP lead molecules via LBVS and SBVS were carried out.
- NP mimics with potent activities were synthesized and tested.
- A new knowledgbase for toxicity prediction was developed.

- Computer modeling was used to valorise of the medicinal potential of African medicinal plants (databases, lead compounds, etc.).
- New databases were developed and published in the web.
- Identification NP lead molecules via LBVS and SBVS were carried out.
- NP mimics with potent activities were synthesized and tested.
- A new knowledgbase for toxicity prediction was developed.

- Computer modeling was used to valorise of the medicinal potential of African medicinal plants (databases, lead compounds, etc.).
- New databases were developed and published in the web.
- Identification NP lead molecules via LBVS and SBVS were carried out.
- NP mimics with potent activities were synthesized and tested.
- A new knowledgbase for toxicity prediction was developed.

- Computer modeling was used to valorise of the medicinal potential of African medicinal plants (databases, lead compounds, etc.).
- New databases were developed and published in the web.
- Identification NP lead molecules via LBVS and SBVS were carried out.
- NP mimics with potent activities were synthesized and tested.
- A new knowledgbase for toxicity prediction was developed.

A B A B A B B B A A A

- Computer modeling was used to valorise of the medicinal potential of African medicinal plants (databases, lead compounds, etc.).
- New databases were developed and published in the web.
- Identification NP lead molecules via LBVS and SBVS were carried out.
- NP mimics with potent activities were synthesized and tested.
- A new knowledgbase for toxicity prediction was developed.

A B A B A B B B A A A

- Computer modeling was used to valorise of the medicinal potential of African medicinal plants (databases, lead compounds, etc.).
- New databases were developed and published in the web.
- Identification NP lead molecules via LBVS and SBVS were carried out.
- NP mimics with potent activities were synthesized and tested.
- A new knowledgbase for toxicity prediction was developed.

Thanks for your kind attention I

www.african-compounds.org

Ntie-Kang, F Databases, Lead Discovery, Toxicity Prediction