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Concept

-p-ANAPL
NP Databases | wawos
-Afrocancer
-AfroDb
-ConMedNP, etc.

Lead Toxicity
Discovery Prediction

-Knowledgbase development

-Virtual screening

-Modeling of drug-target interactions
-Nature-inspired lead discovery
-DMPK profiling

-Eco-Derek (chemical alerts)
-Tox Prediction
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Outline

@ Natural Product Databases
@ Focus on African sources

© Lead Compound Discovery
@ Lead Compounds Discovery by Virtual Screening and
Biological Testing

© Toxicity Prediction
@ Develoment of Toxicity Prediction Knowledgbase
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African flora and other sources
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@ Natural Product Databases
@ Focus on African sources
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African flora and other sources

Natural Products

Preamble
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Vinblastine or vincaleukoblastine (2): R = CH3

Vincristine or leurocristine (3) : R = CHO

2D structures of selected naturally occurring NP anticancer drug leads.
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Natural Products

Some statistics

Table: Natural products versus synthetic drugs

Newman and Cragg. J. Nat. Prod. 2016, 79:629-661

Property

NPs

‘ SDs

Samples

Limited quantities (time consuming

extraction processes)

Readily available

Drug-likeness

Weaker bioavailability (poor DMPK)

More bioavailable

Chemistry

Complex scaffolds, more stereogenic

centres

Less O atoms,

less aromatics, etc.

Marketed drugs

- 6% (unaltered),

-26% (NP derivatives),

-32% (NP mimics) or from NP ph4s

-73% of small molecule antibacterials

-50% of anticancer drugs (e.g. taxol)
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Natural Products

Some recent assesments |
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‘ Virtual
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' Product

Databases

New Drugs, Faster

Known Natural
Product Space

o

Purchasable
Chemical Space

Physical
Compound
Libraries

@ 710% of known NP chemical space is purchasable

@ Much more on demand (outsourcing services, collaborations, etc.)

@ Chen et al., Data resources for the computer-guided discovery of bioactive
natural products. J. Chem. Inf. Model. 2017, 57(9):2099-2111
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African flora and other sources

Natural Products

Chemical space of natural products

(left) NPs (green) in the UNPD and FDA-approved drugs (black):
Lachance et al., J. Med. Chem., 2012, 55:5989-6001.
(middle) NPs in MPs (black) and 25 FDA-approved drugs against T2DM (green):
Rosén et al., J. Med. Chem., 2009, 52:1953-1962.
(right) Predicted score (tPS) plots of NPs (green) and bioactive med chem cpds from
the WOMBAT database (black):

Feher & Schmidt. J. Chem. Inf. Comput. Sci., 2003, 43:218-227.
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Assessment Criteria

Drug-likeness versus natural product-likeness assessment
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African flora and other sources

Assessment Criteria

Drug-likeness versus natural product-likeness assessment

ug-likeness': Lipinski et al.
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Natural Product Databases

African flora and other sources

Assessment Criteria

Drug-likeness versus natural product-likeness assessment

‘Drug-likeness'’: Lipinski et al. (2001)

o Likely OA if: MW <500 Da; log P <5; HBA<10; HBD <5
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African flora and other sources

Assessment Criteria

Drug-likeness versus natural product-likeness assessment

‘Drug-likeness'’: Lipinski et al. (2001)

o Likely OA if: MW <500 Da; log P <5; HBA<10; HBD <5
‘Lead-likeness': Teague et al. (1999)
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African flora and other sources

Assessment Criteria

Drug-likeness versus natural product-likeness assessment

‘Drug-likeness'’: Lipinski et al. (2001)

o Likely OA if: MW <500 Da; log P <5; HBA<10; HBD <5
‘Lead-likeness': Teague et al. (1999)

o Likely LC if: 150 < MW < 350 Da; log P < 4; HBA <6;
HBD < 3

‘NP-likeness': Ertl et al. (2008)
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African flora and other sources

Assessment Criteria

Drug-likeness versus natural product-likeness assessment

‘Drug-likeness'’: Lipinski et al. (2001)

o Likely OA if: MW <500 Da; log P <5; HBA<10; HBD <5
‘Lead-likeness': Teague et al. (1999)

o Likely LC if: 150 < MW < 350 Da; log P < 4; HBA <6;
HBD < 3

‘NP-likeness': Ertl et al. (2008)

f; =log & Brot
' Bi Atot

o Likely an NP if:
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Natural Products from African Medicinal Plants Il

General objectives
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Natural Products from African Medicinal Plants Il

General objectives

o Generate electronically accessible 3D models for molcular
modeling research.
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Natural Products from African Medicinal Plants Il

General objectives

o Generate electronically accessible 3D models for molcular
modeling research.

@ Valorise the use of medicinal plants in Africa in traditional
medicine.
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African flora and other sources

Natural Products from African Medicinal Plants Il

General objectives

o Generate electronically accessible 3D models for molcular
modeling research.

@ Valorise the use of medicinal plants in Africa in traditional
medicine.

@ Identify lead compounds from medicinal plants by using
computer modeling (e.g. via in silico docking and ph4
modeling).
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African flora and other sources

Natural Products from African Medicinal Plants Il

General objectives

o Generate electronically accessible 3D models for molcular
modeling research.

@ Valorise the use of medicinal plants in Africa in traditional
medicine.

@ Identify lead compounds from medicinal plants by using
computer modeling (e.g. via in silico docking and ph4
modeling).

@ Assess the toxicity profiles of metabolites from African sources.
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Natural Products from African Medicinal Plants IV

Our contributions |.

RSC Advances

ConMedNP: a natural product library from Central
African medicinal plants for drug discoveryt

Pascal Amoa Onguéné.? Michael Scharfe.” Luc C. Owono
Luc Meva'a Mbaze.® Wolfgang Sppc*

Fidele Niie-Kang,

et 3y 7015 Owono® Cugene e
Meermea et 015 and Simon M. N Efangel
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Virtualizing the p-ANAPL Library: A Step towards Drug
Discovery from African Medicinal Plants

W. Fotso”, Kerstin Andrae-Marobela™

Fidele Ntie-Kang'", Pascal Amoa Onguéné™”, Gh
Merhatibeb Bezabih®, Jean Claude Ndom’, Bonaventure T. Ngadjuif, Abiodun O. Ogundaini’,

Berhanu M. Abega:

CHEMICAL INFORMATION
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of Potential Anti Agents from African

Medicinal Plants
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and Luc M

* Alachulowu Therim ¥ Conrad Veranso Simoben,
Sippl* Michacl Umale Adikovu,
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NANPDB: A Resource for Natural Products from Northern African
Sources

Fidele Ntie Kang,
Aurdlien T. A Moumbor

and Stefan Giinther®

79 Kiran K. Telukunta#* Kersten Déring ¥ Conrad V. Simoben,
vette 1. Malange Leonel E. Njume,! Joseph N, Yong* Wolfgang Sippl,

http://african-compounds.org/about/
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Natural Products from African Medicinal Plants VI

Our contributions IlI.

Summary of electronic databases developed within this work.

’ Library name ‘ Library size ‘ Source organisms ‘ Families ‘

CamMedNP 1,859 224 55
ConMedNP 3,177 376 79
AfroDb 986 - -
AfroCancer 390 - -
AfroMalariaDb 511 131 45
Afrotryp 321 - 22
p-ANAPL 534 ND ND
NANPDB 4,928 751 155
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Natural Products from African Medicinal Plants IV

Modeling AfroCancer compounds.
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Ntie-Kang et al. J. Chem. Inf. Model., 2014, 54(9):2433-2450
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Natural Products from African Medicinal Plants IV

Modeling AfroCancer compounds.
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Natural Products from African Medicinal Plants IV

Modeling AfroCancer compounds.
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Natural Products from African Medicinal Plants IV

Modeling AfroCancer compounds.
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Top scoring pose for Glide docking of AfroCancer for modeling of the androgen
receptor: (A) crystal structure the drug target (1GS4) in complex with cocrystallized
9a-fluorocortisol. (B) in complex with docked luteolin-7-O-B-glucopyranoside (from
the Egyptian medicinal plant, Livistona australis). (C) Comparison of binding modes

of docking pose of the luteolin-7-O-B-glucopyranoside with co-crystallized

9-fluorocortisol. Polar regions are shown in magenta, hydrophobic regions in green.
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Natural Products from African Medicinal Plants IV

Modeling AfroCancer compounds.

Ntie-Kang et al. Drug Design Dev Therapy., 2016, 10:2137-2154
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Natural Products from African Medicinal Plants V
The p-ANAPL project.

= Alkaloid

B Quinone

= Flavonoid

B Coumarin

M Lignan

M Terpenoid

m Steroid

M Saponin
Xanthone

B Monoaromatic

Ntie-Kang et al. PLoS ONE, 2014, 9(3): e90655.
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Natural Products from African Medicinal Plants V
The p-ANAPL project.
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Natural Products from African Medicinal Plants V
The NANPDB project.
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Natural Products from African Medicinal Plants V
The NANPDB project.
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Natural Products from African Medicinal Plants V
The NANPDB project.
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Natural Products from African Medicinal Plants V

The NANPDB project.
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Outline

© Lead Compound Discovery
@ Lead Compounds Discovery by Virtual Screening and
Biological Testing
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Pharmacophore-based Virtual Screening

Background and motivation
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Pharmacophore-based Virtual Screening

Background and motivation

e Currently, no licensed ARVs target the accessory proteins of
HIV-1.
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Pharmacophore-based Virtual Screening

Background and motivation

e Currently, no licensed ARVs target the accessory proteins of
HIV-1.

@ Vpu is an 81-82 amino acid transmembrane protein that is
found in HIV-1.
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Pharmacophore-based Virtual Screening

Background and motivation

e Currently, no licensed ARVs target the accessory proteins of
HIV-1.

@ Vpu is an 81-82 amino acid transmembrane protein that is
found in HIV-1.

@ Vpu enhances viral replication through multiple functions, e.g.
by downregulating CD4 and the host restriction factor
BST2/CD317/tetherin. Vpu is also reported by some to have
ion channel activity
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Pharmacophore-based Virtual Screening

Background and motivation

e Currently, no licensed ARVs target the accessory proteins of
HIV-1.

@ Vpu is an 81-82 amino acid transmembrane protein that is
found in HIV-1.

@ Vpu enhances viral replication through multiple functions, e.g.
by downregulating CD4 and the host restriction factor
BST2/CD317/tetherin. Vpu is also reported by some to have
ion channel activity

@ HIV-1 viruses with defective Vpu generally display reduced
spread, defects in viral budding, and accumulation at the
surface of infected cells.
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Pharmacophore-based Virtual Screening

Background and motivation

e Currently, no licensed ARVs target the accessory proteins of
HIV-1.

@ Vpu is an 81-82 amino acid transmembrane protein that is
found in HIV-1.

@ Vpu enhances viral replication through multiple functions, e.g.
by downregulating CD4 and the host restriction factor
BST2/CD317/tetherin. Vpu is also reported by some to have
ion channel activity

@ HIV-1 viruses with defective Vpu generally display reduced
spread, defects in viral budding, and accumulation at the
surface of infected cells.

@ Thus, effective replication of HIV in vivo requires a functional
Vpu protein, which makes it a promising drug target.
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Pharmacophore-based Virtual Screening

Literature
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Pharmacophore-based Virtual Screening

Our contribution

N-(6-hydroxy-2-napthoyl}-N'-
phenylguanidine

N-(5-(1-methyl-1 H-pyrazol4-
yDnaphthalene-2-
carbonyl)guanidine (BIT-225)

ﬂ\ Br
SPE
3-(3"-bromophenyljpenta-2 4-
dienoylguanidine

5-methyl 2-napthoylguaridine

Tietjen |, Ntie-Kang F, et al., PLos ONE, 2015, 10(4): e0121099.
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Pharmacophore-based Virtual Screening
Virtual hits
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Pharmacophore-based Virtual Screening
Virtual hits

Table 1. Cell toxicity and inhibition of HIV-1y 4.5 in CEM-GXR cells by p-ANAPL compounds.

Compound Cell toxicity (CC50, pM) HIV-1y, 4.5 inhibition (EC50, pM)
BIT-225 10.7 n/d

geshoidin =10 >100

2MA 50.9 =100

KA 0.9 n/d

boldine =100 50.2

PA 26.8 n/d

ECG =100 =100

EA 52.3 >100

ixoratannin A-2 57.5 34.4

n/d, not determined.

doi:10.1371/joumal.pone.0121099.t001

Tietjen |, Ntie-Kang F, et al., PLos ONE, 2015, 10(4): e0121099.
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Pharmacophore-based Virtual Screening

Ideas for Boldine analogues

OPTIMAL BOLDINE ANTI-HIV ANALOGUE

|
Hyd Don Aro2

X, Y = H-bond acceptors
Don = H-bond donor groups
Hyd = hydrophobic groups
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Structure-based Virtual Screening

Background on sirtuins
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Structure-based Virtual Screening

Background on sirtuins

@ Sirt = silent information regulator, belonging to a highly
conserved family of drug targets.
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Structure-based Virtual Screening

Background on sirtuins

@ Sirt = silent information regulator, belonging to a highly
conserved family of drug targets.

@ In the category of epigenetic drug targets, they are referred to
as “erasers’.

Ntie-Kang, F Databases, Lead Discovery, Toxicity Prediction



Lead Compound Discovery LBVS/SBVS

Structure-based Virtual Screening

Background on sirtuins

@ Sirt = silent information regulator, belonging to a highly
conserved family of drug targets.

@ In the category of epigenetic drug targets, they are referred to
as “erasers’.

e Sirts are nicotinamide adenine dinucleotide (NAD™)-dependent
class Il histone deacetylases.
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Structure-based Virtual Screening

Background on sirtuins

@ Sirt = silent information regulator, belonging to a highly
conserved family of drug targets.

@ In the category of epigenetic drug targets, they are referred to
as “erasers’.

e Sirts are nicotinamide adenine dinucleotide (NAD™)-dependent
class Il histone deacetylases.

@ Sirts are linked to the pathogenesis of numerous diseases, e.g.

HIV, metabolic disorders, neurodegeneration (including
Alzheimer's disease and Parkinson's disease), aging and cancer.

Ntie-Kang, F Databases, Lead Discovery, Toxicity Prediction



Lead Compound Discovery LBVS/SBVS

Structure-based Virtual Screening

Discovery of sirtuin inhibitors
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| |

5 compounds 18 compounds
removal of duplicates

~

13 compounds

7 compounds

+ assays

Rhuschalcones | (9) and IV (8)
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Structure-based Virtual Screening

Discovery of sirtuin inhibitors
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Structure-based Virtual Screening

Discovery of sirtuin inhibitors

Table 1. ICs5) or percentage inhibitions at 50% of tested pan-African Natural Products Library
(pfANAPL) compounds against sirtl, 2 and 3.

Compound Number Sirt 1 (uM) Sirt 2 (uM) Sirt 3 (uM or % Inhibition)

1k nd. © nd. © nd. €
2 ni. ? ni. ni. ?*
8 46.7 £ 6.0 48.5 + 39.5 38%
9 408 +85 448 +5.1 23%
10 ni.? ni. ? ni.?
12°b nd. nd. n.d.
13 ni? ni? ni?

NA 1424 =91 498 £ 4.6 67.9 £33
EX-527 14=+01 106 =11 19%

2 n.i. = no inhibition (<10%). ® autofluorescence. < n.d. = not detectable. Note that activity was not detectable due to
the autofluorescence. NA = nicotinamide, EX-527 = sirt inhibitor in clinical trials.
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Structure-based Virtual Screening

Discovery of sirtuin inhibitors

-Rhus pyroides (Anacardiaceae)
-Tree from Eastern Botswana
-Antifeedant properties
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Lead Compound Discovery LBVS/SBVS

Structure-based Virtual Screening

Discovery of sirtuin inhibitors
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Lead Compound Discovery LBVS/SBVS

Structure-based Virtual Screening

Some suggestions
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Toxicity Prediction Eco-Derek, Alerts

Outline

© Toxicity Prediction
@ Develoment of Toxicity Prediction Knowledgbase
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Toxicity Prediction Eco-Derek, Alerts

Knowledgbase for Toxicity Prediction
Eco-Derek Background
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Toxicity Prediction Eco-Derek, Alerts

Knowledgbase for Toxicity Prediction
Eco-Derek Background

@ Toxicity model: 40 hour static flow growth inhibition assay
(log(1/1GCsp) values) for the ciliated protozoan Tetrahymena
pyriformis, from Schultz et al. Toxicol. Methods 1997, 7:
289-309.
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Toxicity Prediction Eco-Derek, Alerts

Knowledgbase for Toxicity Prediction
Eco-Derek Background

@ Toxicity model: 40 hour static flow growth inhibition assay
(log(1/1GCsp) values) for the ciliated protozoan Tetrahymena
pyriformis, from Schultz et al. Toxicol. Methods 1997, 7:
289-309.

@ Published data on over 1200 chemicals, from Xue et al. Chem.
Res. Toxicol. 2006, 19:1030-1039.
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Toxicity Prediction Eco-Derek, Alerts

Knowledgbase for Toxicity Prediction
Eco-Derek Background

@ Toxicity model: 40 hour static flow growth inhibition assay
(log(1/1GCsp) values) for the ciliated protozoan Tetrahymena
pyriformis, from Schultz et al. Toxicol. Methods 1997, 7:
289-309.

@ Published data on over 1200 chemicals, from Xue et al. Chem.
Res. Toxicol. 2006, 19:1030-1039.

@ log(1/1GCso) was predicted as a function of log P, e.g. log
(1/1GCs050 NPN) = 0.78 log P - 2.01 (n = 87, r> = 0.96).
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Toxicity Prediction Eco-Derek, Alerts

Knowledgbase for Toxicity Prediction
Eco-Derek Background

_ log (1/]GC50 non—polar narcosis, calculated) =0.78log P - 2.01
Xue et al. dataset. Regression equations reported in Ellison et al. SAR QSAR
Environ. Res. 2008:19, 751-783 for non-polar narcosis and Schultz et al. Sci. Total
Environ. 1991, 109-110:569-580 for polar narcosis.
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Highlights

o Computer modeling was used to valorise of the medicinal
potential of African medicinal plants (databases, lead
compounds, etc.).
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o Computer modeling was used to valorise of the medicinal
potential of African medicinal plants (databases, lead
compounds, etc.).

o New databases were developed and published in the web.

@ |dentification NP lead molecules via LBVS and SBVS were
carried out.

@ NP mimics with potent activities were synthesized and tested.
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Highlights

Computer modeling was used to valorise of the medicinal
potential of African medicinal plants (databases, lead
compounds, etc.).

New databases were developed and published in the web.

Identification NP lead molecules via LBVS and SBVS were
carried out.

NP mimics with potent activities were synthesized and tested.

A new knowledgbase for toxicity prediction was developed.
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Thanks for your kind attention |

e

7 Lhasa
et DAAD Limited

6 Department of Informatics and Chemistry
UCT PRAGUE

www.african-compounds.org
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