Approximate string matching approaches for genomic data
Cvacho O.1, Hrbek L.1, Holub J.1 
1 Faculty of Information Technology, Czech Technical University in Prague
Approximate string matching is essential operation in many bioinformatics applications. For example, mapping reads from high-throughput sequencing onto reference genome, or in the microarray probe design process. Approximate string matching is a task to find all occurrences of given pattern P in a text T with some maximum number k of mismatches allowed. The number of mismatches is measured using distance metric that expresses the minimum number of operations required to transform one sequence into another (or its substring). We are interested in Hamming and Levenshtein distance. Hamming distance uses only one operation substitution and it is defined for two sequences of the same length. Levenshtein distance is defined as the minimum number of operations substitution, insert and delete.

The key ideas for our proposed algorithm are to use compressed self-index and low memory usage of the index and all additional data structures. Multiple approaches exist for solving approximate string matching. Dynamic programming (Needleman-Wunsch, SmithWaterman), automata-based algorithms, and filtering algorithms.

We focus on solving an approximate string matching problem using filtering technique. The first method is based on the pigeonhole principle. The idea is to divide the pattern into substrings and search for them using exact search. All found locations are examined for a possible occurrence. The second method is a generation of the pattern neighborhood. Neighborhood generation uses traversal of the de Bruijn graph (dBG) to filter out non-perspective pattern variants. dBG is constructed from all k-mers that are present in the input genome.

We compared these two methods against state of art searching application currently used in bioinformatics. We focused on time and memory differences, advantages and disadvantages of each method for short and long patterns and proposed possible combination. We have developed an approximate string matching algorithm, and its variants, that will detect all approximate matches. Results show that neighborhood generation method is able to reduce the number of pattern variants nearly four times and still maintaining competitive running time. Resulting index has smaller memory requirements than Bowtie. The other method shows promise for better running time for large genomes in comparison to BLAST.
